Hydrodynamics of Inelastic Maxwell Models
نویسندگان
چکیده
An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier–Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman–Enskog method to inelastic gases. Second, the non-Newtonian rheological properties in the uniform shear flow (USF) are obtained in the steady state as well as in the transient unsteady regime. Next, an exact solution for a special class of Couette flows characterized by a uniform heat flux is worked out. This solution shares the same rheological properties as the USF and, additionally, two generalized transport coefficients associated with the heat flux vector can be identified. Finally, the problem of small spatial perturbations of the USF is analyzed with a Chapman–Enskog-like method and generalized (tensorial) transport coefficients are obtained.
منابع مشابه
Hydrodynamics for inelastic Maxwell model
Hydrodynamic equations for an inelastic Maxwell model are derived from the inelastic Boltzmann equation based on a systematic Chapman-Enskog perturbative scheme. Transport coefficients appear in Navier-Stokes order have been determined as a function of the restitution coefficient e, which cannot be defined for small e as a result of the high energy tail of the velocity distribution function obe...
متن کاملHydrodynamic Burnett equations for inelastic Maxwell models of granular gases.
The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic Boltzmann equation, with a velocity-independent collision rate proportional to the γ power of the temperature. The pressure tensor and the heat flux are obtained to second order in...
متن کاملBuilt upon sand: Theoretical ideas inspired by granular flows
Granulated materials, like sand and sugar and salt, are composed of many pieces that can move independently. The study of collisions and flow in these materials requires new theoretical ideas beyond those in the standard statistical mechanics or hydrodynamics or traditional solid mechanics. Granular materials differ from standard molecular materials in that frictional forces among grains can di...
متن کاملTransport coefficients of d-dimensional inelastic Maxwell models
Due to the mathematical complexity of the Boltzmann equation for inelastic hard spheres, a kinetic model has recently been proposed whereby the collision rate (which is proportional to the relative velocity for hard spheres) is replaced by an average velocity-independent value. The resulting inelastic Maxwell model has received a large amount of recent interest, especially in connection with th...
متن کاملDriven inelastic Maxwell models with high energy tails.
The solutions of the homogeneous nonlinear Boltzmann equation for inelastic Maxwell models, when driven by different types of thermostats, show, in general, overpopulated high energy tails of the form approximately exp(-ac), with power law tails and Gaussian tails as border line cases. The results are compared with those for inelastic hard spheres, and a comprehensive picture of the long time b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011